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Abstract
We present a general extension of a field-theoretic approach developed in earlier
papers to the calculation of the free energy of symmetrically layered electrolytic
systems which is based on the sine–Gordon field theory for the Coulomb gas.
The method is to construct the partition function in terms of the Feynman
evolution kernel in the Euclidean time variable associated with the coordinate
normal to the surfaces defining the layered structure. The theory is applicable
to cylindrical systems and its development is motivated by the possibility that a
static van der Waals or thermal Casimir force could provide an attractive force
stabilizing a dielectric tube formed from a lipid bilayer, an example of which is
provided by the t-tubules occurring in certain muscle cells. In this context, we
apply the theory to the calculation of the thermal Casimir effect for a dielectric
tube of radius R and thickness δ formed from such a membrane in water. In a
grand canonical approach we find that the leading contribution to the Casimir
energy behaves like −kBT LκC/R which gives rise to an attractive force which
tends to contract the tube radius. We find that κC ∼ 0.3 for the case of typical
lipid membrane t-tubules. We conclude that except in the case of a very soft
membrane this force is insufficient to stabilize such tubes against the bending
stress which tends to increase the radius. We briefly discuss the role of the
lipid membrane reservoir implicit in the approach and whether its nature in
biological systems may possibly lead to a stabilizing mechanism for such lipid
tubes.

1. Introduction

In an recent short communication we reported on a calculation which investigated the possibility
that a static van der Waals or thermal Casimir force could provide an attractive force across
a tube formed from a lipid bilayer, so leading to its stabilization. In this paper we give the
details of the general theory of symmetrically layered electrolytic systems which underlies
that calculation, and explain the details of the calculation applying the theory to cylindrical
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geometry and to a model for the lipid bilayer tube. Whilst the motivation for developing the
theory presented below is the analysis of the Casimir force in the context of a dielectric tube
immersed in water, the theory is applicable to any sufficiently symmetrical system consisting
of layer containing electrolyte. The Coulomb properties of such systems are described by
a sine–Gordon field theory and a full analysis in the case of flat layers has been made with
the approach which is generalized in this paper. In particular, it allows for the perturbation
series for the thermal Casimir force to be developed in terms of the dimensionless coupling
g = lB/ lD where lB and lD are the Bjerrum and Debye lengths, respectively.

The behaviour of systems composed of layers of varying dielectric constants was first
studied by Lifshitz and co-workers [1] and has been subsequently revisited by a number of
authors [2–4]. The formalism developed is an elegant way of taking into account van der
Waals forces in a continuum theory. Two types of van der Waals force are accounted for in
theses theories, firstly zero-frequencyvan der Waals forces whose nature is purely classical and
secondly the frequency dependent ones due to temporal dipole fluctuations. In terms of thermal
field theory the former correspond to the zero-frequency Matsubara frequency and the latter
to the non-zero frequencies. In order to calculate these latter terms we require information
about the frequency dependence of the dielectric constants, whereas calculating the former
only requires the static dielectric permittivity. The quantum Casimir effect corresponding to
the modification of the ground state energy of the electromagnetic field has been intensively
studied in the case of idealized boundary conditions in a variety of geometries including spheres
and cylinders [5]. The thermal Casimir effect investigated here has a similar mathematical
structure though the corresponding effective spatial dimension is one less in the calculations.
The temperature dependence of the full Casimir effect in a simplified model of a solid dielectric
cylinder (and sphere) has been recently examined using a heat kernel coefficient expansion [6].
In our analysis of the diffuse limits we make use of summation theorems for Bessel functions
which were introduced for the study of the Casimir energy for cylinders with light-velocity
conserving boundary conditions [7]. In this paper we will calculate only the zero-frequency
contribution, also known as the thermal Casimir effect. The thermal Casimir effect may
also be calculated in the presence of an electrolyte and the technique we develop here for
electrolytic systems within the Debye–Hückel approximation is valid in the domain of weak
electrolyte concentrations. There is an extensive literature on the thermal Casimir effect for
systems of layered geometries, both without added electrolyte and within the Debye–Hückel
approximation [2–4]. Recently the calculation of the thermal Casimir force for layered films at
the first order of the theory of perturbation about the Debye–Hückel theory was carried out [8],
suggesting the possibility of strong non-perturbative effects.

An alternative approach to the calculation of the renormalization of bending rigidity due to
pairwise interactions has been developed by Netz [3] who performs an all-orders resummation
of such electrostatic forces in charged multilayered membranes. Netz obtains a result which
compares qualitatively with the result we obtain in equations (5), (6) as an approximation to
the complete mathematical expression derived in this paper for the one-loop contribution to
the thermal Casimir free energy. It would be useful to understand the relation between these
different approaches and to elucidate the microscopic phenomena underlying these calculations
and clarify the role of short distance effects and the ultraviolet cut-off. Our approach is to
develop the formalism in the context of symmetrically layered electrolytic membranes so
that the full perturbation theory for higher order loops can be formulated and retardation and
quantum effects can be taken into account; this will be the subject of future work.

In section 2 we discuss the model for the lipid bilayer tube and review the outcome of the
calculation applied to this model; in section 3 we present the general theory for calculating
the free energy of a general symmetrically layered electrolytic system; in section 5 we apply
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the general theory to dielectric layers with cylindrical geometry; in section 6 we present the
calculation of the Casimir force for the particular case of a dielectric tube of thickness δ
and radius R immersed in water; in section 7 we evaluate the Casimir force for physically
reasonable values of δ, R and in section 8 we present some conclusions.

2. The lipid tubule

The behaviour of lipid bilayers is of crucial importance in biophysics. Lipid bilayers in water
exhibit a huge variety of geometries and structures and in the context of cell biology even more
varied structures are exhibited. In order to understand where biological mechanisms such
as molecular motors and cytoskeletal structures are determinant in the stability of biological
structures, one must first understand the role of the basic physical interactions in systems that
contain only lipid bilayers, i.e. model membrane systems. There has been much study of lipid
bilayer shape and elasticity using standard continuum mechanics [9, 10]. This basic approach
is also complemented by more microscopic studies based on lipid structure and lipid–lipid
interaction models; this approach is of course ultimately necessary to fully understand the
physics of bilayers. The bilayer is composed of two layers of lipid each layer having the
hydrophilic lipid head at the surface where it is in contact with water; the interior is composed
of the lipid’s hydrocarbon tails. This layer geometry is stable due to the hydrophobic nature
of the hydrocarbon tails. Given this non-homogeneous structure one can immediately see that
a simple continuum elastic sheet-type model may have difficulty in predicting the mechanical
properties of bilayers.

In certain muscle cells, structures known as t-tubules are found. These are basically
cylindrical tubes whose surface is composed of a lipid bilayer. Similar structures may also be
mechanically drawn off from bilayer vesicles. The stability of these tubular structures requires
an explanation. The basic continuum theory [9, 10] predicts that the free energy of a tube of
length L and radius R is

FB(L, R) = kBT LκB

R
, (1)

where the above expression is strictly speaking the excess free energy with respect to a flat
membrane of the same area A = 2πRL and the subscript B refers to mechanical bending.
Various experimental and theoretical estimates for κB can be found in the literature [10, 11] and
they lie between 3 and 30. Note that our definition of κB differs from that used traditionally
in the literature, κ , by a factor of π : κB = πκ . The values of κB depend of course on
the composition of the bilayer and on the experimental protocol used to measure it. One
crucial element in both theoretical and experimental determinations of κB is whether the tube
is attached to a reservoir of lipid or not, i.e. whether the statistical ensemble is grand canonical
or canonical. Clearly if there is no reservoir then any increase in the surface area of the tube
will lead to a less dense lipid surface concentration; in this case water may be able to come into
contact with the internal layer composed of the hydrophobic heads and thus give a significant
increase in free energy. If, upon changing the area of the tube, lipids can flow into the tube
to maintain the local optimal packing, then the free energy cost will be substantially different.
This bending free energy is positive and hence the preferred thermodynamic state is the flat
one. Mechanical models for membranes vary in their predictions for the dependence of κB on
the membrane thickness δ. The models most compatible with the available experimental data
predict that

κB = K Aδ
2/α (2)
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Figure 1. Horizontal cross section through an idealized tubule configuration; shown are dimensions
and dielectric permittivities.

whereα depends on the precise model and is generically O(10) and K A is the area compression
modulus [10, 12]. Experimental fits of κB with respect to the membrane thickness are
compatible with

κB = K A(δ − δ0)
2/α (3)

where δ0 ≈ 1 nm is an offset necessary to fit the data. We note that when lipid tubes are
drawn from a vesicle the mechanically applied tension can of course overcome this free energy
barrier. A natural question motivated by the fact that we see these structures in cells is whether
there are any other mechanisms that could lead to their formation and explain their stability. A
possible explanation is that electrostatic effects involving surface charges and ions (salt) in the
surrounding medium could play a role [13–15]. Certain experiments [14] however revealed
a relative insensitivity of some systems to the concentration of salt. There are however other
systems where the salt concentration does appear important in determining the stability of the
tubules [16]; in these systems the lipid head groups are highly charged. Another explanation
has been put forward in terms of the geometry of the lipid, notably the tail having a structure
such that there is a preferred orientation of the tails next to each other, giving rise to a chirality
which allows the stabilization of the tubes [17–21]. This explanation would however depend
on a more or less mono-disperse lipid bilayer in order to permit this liquid crystal-like phase.
Cell membranes are composed of a wide variety of lipid types and additionally have proteins
present and so it is possible that another mechanism is responsible for the stability of these
structures.

We adopt a continuum model where the lipid bilayer is modelled as a layer of thickness
δ ≈ 5–10 nm and consisting of a medium of dielectric constant εM ≈ 2ε0. The surrounding
water is also treated as a dielectric continuum of dielectric constant εW ≈ 80ε0. The
dependence of the results on these dielectric constants is through the parameter� defined by

� = εW − εM

εW − εM
. (4)

We shall also adopt a model where the lipid tube is fixed at each end to a flat lipid reservoir
and thus work in the grand canonical ensemble; this is shown schematically in figures 1 and 2.

In this paper we find that the thermal Casimir effect gives a contribution to the excess free
energy above the flat plane of

FC(L, R) = −kBT LκC

R
(5)

with

κC = �2

64

[
3 log

(
πδ

a

)
+ 6 log 2 + 3γE − 4

]
+�4 B(�), (6)
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Figure 2. Vertical cross section through an idealized tubule configuration showing a tubule of
length L and radius R bridging two flat bilayers.

where a is a microscopic cut-off corresponding to the molecular/lipid size below which the
continuum picture of the dielectric medium breaks down. We note that the sign of FC has exactly
the same functional form as the bending free energy FB but is of opposite sign, meaning that
this force tends to collapse the tube and thus helps to stabilize the system against the bending
energy. We shall show later that with reasonable physical parameters κC ≈ 0.5–1.0. Thus
the Casimir attraction is not able to overcome the repulsion due to bending as is predicted by
current theories and data. However this result is important for several reasons:

• We show that the Casimir attraction tends to stabilize the tube structure.
• The presence of the microscopic cut-off in κC shows that the physics is ultimately

dominated by the short scale or ultraviolet physics. This means that weak electrolyte
concentrations will have little effect on the system as seen in experiments, given that there
are no strong surface charges.

• We see that FC and FB have the same functional form at large R and that the behaviour
of κC is regulated by the microscopic physics. This means that our calculation can be
interpreted as a renormalization of κB due to the thermal Casimir effect.

• Further attractive, or tube stabilizing, interactions may be generated by the high frequency
Matsubara modes which account for retardation and quantum effects.

3. The Schrödinger kernel for separable systems

The mathematical tool that allows us to derive the free energy for electrolytic systems with
symmetrical layered films is the functional Schrödinger kernel which evolves the sine–Gordon
scalar field from some initial surface to a final surface. Our method is applicable when the
Laplacian is separable in the natural coordinates describing the surfaces bounding the layers
of the system. In the surface between the bounding layers the electrostatic and chemical
properties of the system are uniform; i.e. the dielectric constants and electrolyte concentrations
are constant. It is in this sense that we describe such a system as symmetrical. In this case, in D
dimensions, the coordinates can be denoted by (x, σ ) where x is a list of (D − 1) coordinates
for surfaces σ = constant. The i th surface of an N-layer system is described by σ = σi ,
where the σi are constants with σi+1 > σi , 0 � i � N with σ0 and σN being respectively
the minimum and maximum values in the range of σ . The local electrochemical properties
of the system thus depend solely on the coordinate σ . Our example in this paper will be that
of coaxial cylinders for D = 3, where x = (θ, φ) and σ = r , the radius. However, the
theory is more general than for cylindrical or spherical coordinates, and so we lay the theory
out below in a general notation but refer to the cylindrical case for clarity where appropriate.
The dynamics of the field φ(x, σ ) is defined by its evolution in the Euclidean time coordinate
t, −∞ < t < ∞ which is given in terms of σ . The volume measure is dv = J (σ ) dσ dx and
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the Euclidean time t (σ ) is defined by

t (σ2)− t (σ1) =
∫ σ2

σ1

dσ

J (σ )
. (7)

For example, in the cylindrical geometry σ = r, t = log σ and in the planar case t = σ = z.
To derive the general form for the kernel it is convenient to express the contribution from

one layer of the system to the total free energy in dimensionless variables. In a previous
paper [8] we derived an expression for the grand partition function of a layered system in a
dimensionless form, and in the present context the effective action is the sine–Gordon field
theory which defines the kernel and is written as

S = − 1

8π

∫
V12

dv (∇φ)2 +
Z(g)

4πg

∫
V12

dv cos(
√

gφ), (8)

where the region defining the layer is bounded by two neighbouring surfaces S1 and S2 defined,
respectively, by σ = σ1, σ = σ2, σ1 < σ2, and has volume V12. All lengths are measured in
terms of the Debye length, lD = 1/m, where m = √

2ρe2β/ε is the Debye mass, ρ is the ion
density of the bulk reservoir to which the electrolyte solution within the layer is connected and ε
is the dielectric constant in the layer. The other fundamental length in the theory is the Bjerrum
length, lB = e2β/4πε, and the dimensionless coupling constant is given by g = lB/ lD. The
dimensionful field is given in terms of φ by the rescaling

φ −→ eβ√
g
φ. (9)

The renormalization constant Z(g) is associated with the ion chemical potentialµ conjugate to
ρ, and removes the divergences due to the unphysical charge self-interactions. In equation (8),
µ has been replaced by the reservoir density ρ using the relation

µ = Z(g)ρ, Z(g) = 1

〈cos(
√

gφ)〉B
, (10)

where the above subscript B indicates that expectation value is for an infinite bulk system.
The total partition function is constructed by taking a convolution of the kernels of the

layers in sequence, and to carry this out the dimensionful description must be restored. For
multiple layers the action is a sum of similar terms each associated with a layer of the system
bounded by an inner and an outer surface. In particular, the innermost and outermost surfaces
are at σ0 and σN corresponding to t = −∞ and ∞, respectively. It was shown in [4, 22]
that for planar interfaces the Schrödinger kernels which are bounded by one or the other of
these surfaces are given in terms of the ground state wavefunction of the appropriate free
Hamiltonian, and that this is sufficient to ensure that the overall charge neutrality constraint
is respected. In the more general case, where the interfaces are non-planar (cylindrical, for
example), the Hamiltonian depends explicitly on the Euclidean time t and so there is no
interpretation in terms of stationary eigenstates. However, in the limit t → ±∞ the relevant
kernels are separable in the boundary fields, and this leads to the same result.

The action S in equation (8) can be decomposed as

S = Z(g)

4πg
V + S(0) +�S, (11)

where V is the volume of the layer and the first term is the ideal contribution. The term S(0)
is the action for a free or Gaussian field theory and is given by

S(0) = − 1

8π

∫
V

dv
[
(∇φ)2 + φ2

]
. (12)
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The interacting part of S is expressed as a perturbation

�S = 1

4πg

∫
V

dv

[
Z(g)

(
cos(

√
gφ)− 1

)
+

gφ2

2

]
, (13)

and the action SB for the equivalent bulk system is given by

SB = − 1

8π

∫
B

dv (∇φ)2 +
Z(g)

4πg

∫
B

dv cos(
√

gφ), (14)

which may be decomposed in the same manner as for S.
The Schrödinger kernel for the layer is defined by

K̂ (φ2(x), σ2;φ1(x), σ1) =
∫ φ2

φ1

Dφ eS(φ), (15)

whereφi (x) = φ(x, σi ), i = 1, 2, are the boundary values of the field φ(x, σ ) on the bounding
surfaces Si , respectively.

In this section we concentrate on the calculation of K̂ (0)(φ2(x), σ2;φ1(x), σ1) defined by

K̂ (0)(φ2(x), σ2;φ1(x), σ1) =
∫ φ2

φ1

Dφ eS(0)(φ). (16)

The explicit evaluation of K̂ (0) for the specified geometry gives the Casimir effect contribution
from the layer to the free energy = −kBT log�, where� is the grand partition function for
the system, and forms the basis for a perturbative expansion of  in terms of the interaction
coupling strength g. For an N-layer system the grand partition function for the free theory,
�(0), is given by the convolution over layers as

�(0) =
∫ N∏

i=0

Dφi K̂ (0)
i (φi+1(x), φi(x), σi+1, σi ), (17)

where t (σ0) = −∞, t (σN ) = ∞, and where the K̂ (0)
i are re-expressed in terms of the original,

dimensionful, boundary fields so that their values match correctly on the common interface
separating successive layers. The Casimir free energy is then given by

FC = (0) −
(0)
B . (18)

Here(0)B is the equivalent bulk contribution of an independent set of pure bulk systems having
the same volume and properties as the layers composing the system. In this way the generalized
force corresponding to the position of any interface is a disjoining pressure.

We shall now show how to explicitly compute K̂ (0)(φ2, σ2;φ1, σ1) in its dimensionless
form. The volume measure in equation (16) is dv = J (σ ) dσ dx where J (σ ) is the Jacobian
of the measure. Since the functional integral defining K̂ (0) is Gaussian in form we explicitly
find the classical field φc which minimizes the action by solving the linear field equation

−(∇ · J (σ )∇)φc + J (σ )φc = 0, (19)

with boundary constraints

φc(x, σ1) = φ1(x), φc(x, σ2) = φ2(x). (20)

We assume that the operator ∇ · J (σ )∇ is separable, which allows us to write this field equation
as

− d

dσ
J (σ )

d

dσ
φc − J (σ )(∇2

x + 1)φc = 0, (21)
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where ∇2
x is self-adjoint and may depend on σ but not on derivatives with respect to σ . The

orthonormal eigenfunctions of −∇2
x are denoted as X (s, x) with eigenvalues λ(s, σ ):

−∇2
x X (s, x) = λ(s, σ )X (s, x), (22)

where s is a set of D − 1 quantum numbers. The classical field φc(x, σ ) is expanded on the
complete set of functions {X} as

φc(x, σ ) =
∑

s

T (s, σ )X (s, x), (23)

where T (s, σ ) satisfies the ordinary differential equation[
− d

dσ
J (σ )

d

dσ
+ J (σ )(λ(s, σ ) + 1)

]
T (s, σ ) = 0. (24)

We denote two solutions of this equation by F1(s, σ ) and F2(s, σ ), where F1(s, σ ) is finite as
t (σ ) → −∞ and F2(s, σ ) is finite as t (σ ) → ∞. In addition, these functions with different
quantum numbers s are orthogonal with respect to the appropriate measure. The Wronskian
is given by the identity

J (σ )[F1(s, σ )F
′
2(s, σ )− F ′

1(s, σ )F2(s, σ )] = 1. (25)

Then we can write

T (s, σ ) = a1(s)F1(s, σ ) + a2(s)F2(s, σ ). (26)

The boundary fields φi on the surfaces Si of the system can be expanded as

φi (x) =
∑

s

ci(s)X (s, x), 0 � i � N. (27)

For the generic layer under discussion we consider the bounding surfaces to be S1 and S2.
Comparing with equations (23) and (26), we find the relation between c(s) = (c1(s), c2(s))
and a(s) = (a1(s), a2(s)) to be

c = a · F (s, σ2, σ1), F (s, σ2, σ1) =
(

F1(s, σ1) F1(s, σ2)

F2(s, σ1) F2(s, σ2)

)
. (28)

Now using the classical field in equation (23) and the definition of S(0) from equation (12) we
find that the free classical action is S(0)(φc), given by the boundary term

S(0)(φc) = − 1

8π

∫
dx

[
J (σ )φc(x, σ )

dφc(x, σ )
dσ

]σ2

σ1

, (29)

where we have used integration by parts.
We use the expansion of φc(x, σ ) in equation (23) in terms of the coefficients a(s) and the

expansion of φi (x), i = 1, 2, in equation (27) in terms of the coefficients c(s), and also use
the fact that the functions of the basis set {X (s, x)} are orthonormal. We can then eliminate
a(s) in favour of c(s), and find from equation (29) that

S(0)(φc) = − 1
2

∑
s

c(s) · D(s, σ2, σ1) · c(s), (30)

with

D = F −1G, G(s, σ2, σ1) =
(−J (σ1)F ′

1(s, σ1) J (σ2)F ′
1(s, σ2)

−J (σ1)F ′
2(s, σ1) J (σ2)F ′

2(s, σ2)

)
. (31)

Then we have

K̂ (0)(φ2(x), σ2;φ1(x), σ1) =
∏

s

K (0)(s, c2(s), σ2; c1(s), σ1),

K (0)(s, c2(s), σ2; c1(s), σ1) = A(s, σ2, σ1) exp
(− 1

2 c(s) · D(s, σ2, σ1) · c(s)
)
, (32)
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where the normalization factors A(s, σ2, σ1) arise from the Gaussian integration over the
fluctuations ξ(x, t) of the field φ(x, t) about the classical solution. We have that

A(s, σ2, σ1) =
∫

Dξ̃ exp


− 1

8π

∫ σ2

σ1

dσ J (σ )



(

dξ̃

dσ

)2

+ (λ(s, σ ) + 1)ξ̃2




 , (33)

where

φ(x, σ ) = φc(x, σ ) + ξ(x, σ ),
φ̃(s, σ ) = φ̃c(s, σ ) + ξ̃ (s, σ ),

(34)

and where generically we have defined the transform, f̃ (s, σ ), of a function f (x, σ ) by

f̃ (s, σ ) =
∫

dx f (x, σ )X (s, x). (35)

The boundary conditions are

ξ(x, σ1) = ξ(x, σ2) = 0 
⇒ ξ̃ (s, σ1) = ξ̃ (s, σ2) = 0, ∀s. (36)

Then we have

A(s, σ2, σ1) ∝ (det[Lσ (s)])−1/2 , Lσ (s) = − d

dσ
J (σ )

d

dσ
+ J (σ )(λ(s) + 1). (37)

The determinant can be calculated by diagonalizing Lt (s) on a basis of orthonormal
eigenfunctions which satisfy the boundary conditions on ξ(σ ) given in equation (36). Whilst
yielding the correct result this is not the quickest way to compute A(s, σ2, σ1). The Pauli–van
Vleck formula tells us that

A =
∏

s

A(s, σ2, σ1) =
(

1

2π

∣∣∣∣det

[
∂2S(0)(φc)

∂φ1∂φ2

]∣∣∣∣
)1/2

. (38)

Using the expression for S(0)(φc) in equation (30), we find

A(s, σ2, σ1) =
√ |D12(s, σ2, σ1)|

2π
. (39)

The Pauli–Van Vleck formula can be derived by analytically continuing the Euclidean
time variable t to Minkowski time τ , by performing the Wick rotation t → τ = −it . For this
purpose we consider the kernels K̂ and K (0) as functions of ti = t (σi ) rather than σi , and then
K̂ (φ2, iτ2;φ1, iτ1) as defined by equation (15) is a unitary operator which means that

K (0)(s, c2, iτ ; c1, iτ ) =
∫

dc′ (K (0)(s, c′, iτ ′; c2, iτ )
)∗

K (0)(s, c′, iτ ′; c1, iτ ) = δ(c2 − c1),

(40)

for any τ ′. From equation (32)

K (0)(s, c2, iτ2; c1, iτ1) = A(s, iτ2, iτ1) exp

(
− i

2
c(s) · D I (s, τ2, τ1) · c(s)

)
, (41)

where D I (s, τ2, τ1) = −iD(s, iτ2, iτ1) is a real symmetric matrix. Then

|A(s, iτ2, iτ1)|2
∫

dc′ exp

(
i

2

[
2D I

12(s, iτ2, iτ1)(c2 − c1)c
′ + D I

22(s, iτ2, iτ1)(c
2
2 − c2

1)
])

= δ(c2 − c1). (42)

This equation determines A(s, iτ2, iτ1) and, on analytic continuation back to Euclidean time t
and re-expressing it as a function of σ , we find that A(s, σ2, σ1) is given by equation (39).
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The kernel K̂ (0)(φ2(x), iτ2;φ1(x), iτ1) analytically continued to Minkowski time τ

describes the time evolution of the wavefunction in the associated quantum mechanics problem.
The Hamiltonian associated with K (0)(s, c2, t2; c1, t1) is

H(s, c, t) = −1

2

∂2

∂c2
+ J 2(σ )(λ(s, σ ) + 1) c2, (43)

where σ ≡ σ(t) is defined by inverting equation (7). This Hamiltonian contains an explicit
time dependence and so the usual quantum mechanical analysis becomes more general. The
Euclidean version of the Schrödinger equation for wavefunction ψ(s, c, t) is

− ∂

∂ t
ψ(s, c, t) = H(s, c, t)ψ(s, c, t). (44)

This equation is also satisfied by K (0)(s, c, t; c′, t ′) regarded as a function of (c, t) for fixed
(c′, t ′). As remarked earlier, because the Hamiltonian is explicitly dependent on t there are
no stationary states associated with H(s, c, t). However, in the limit that either t → ∞ or
t → −∞ the kernel K (0)(s, c, t; c′, t ′) is a separable function of c and c′ except in one particular
case. These properties will be elucidated in the context of cylindrical interfaces discussed in the
next section. The connection between the grand partition function in statistical mechanics and
the related quantum mechanical formulation is the one outlined above between the imaginary
and real time formalisms [23].

The final outcome for the contribution from quantum numbers s to the kernel for the free
field theory in the layer, up to an irrelevant factor, is

K (0)(s, c2, σ2, c1, σ1) = 1√|H (s, σ2, σ1)| exp

(
−1

2
c · D(s, σ2, σ1) · c

)
, (45)

where, using equations (28) and (31), we find

D(s, σ2, σ1) = 1

H (s, σ2, σ1)

(
W (s, σ2, σ1) 1

1 W (s, σ1, σ2)

)
. (46)

We have used the identity for the Wronskian in equation (25), and have defined

W (s, σ j , σi ) = J (σi)[F1(s, σ j )F
′
2(s, σi )− F ′

1(s, σi )F2(s, σ j )],

H (s, σ j , σi ) = F1(s, σi )F2(s, σ j )− F2(s, σi )F1(s, σ j ).
(47)

4. Concentric cylinders

We now apply the formalism of the previous section to the case of two concentric cylinders
of length L in the z-direction and radii r1 and r2, respectively, with r1 < r2. The separable
coordinates are x = (θ, z), σ = r and the Euclidean time coordinate is t = log(r) (note that all
coordinates are considered dimensionless at this stage). Hence, r → 0(∞) ⇒ t → −∞(∞).
In what follows, we work with r rather than t for simplicity. The volume measure is

dv = r dr dθ dz ⇒ J (r) = r, (48)

and equation (22) becomes

−
(

1

r2

∂2

∂θ2
+
∂2

∂z2

)
X (s, θ, z) = λ(s, r)X (s, θ, z), (49)

with the solution

X (s, θ, z) = 1

2π
einθ eipz .

s = (n, p), n ∈ Z , −∞ < p < ∞,

λ(s, r) = (n2/r2 + p2).

(50)
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Equation (24) is then[
− d

dr
r

d

dr
+

n2

r
+ (p2 + 1)r

]
T (s, r) = 0. (51)

This is Bessel’s modified equation [24], and the two required solutions are

F1(s, r) = In(Pr), F2(s, r) = Kn(Pr) (52)

where P2 = p2 + 1. We note that the Wronskian condition of equation (25) is satisfied by
these solutions since

Pr [In(Pr)K ′
n(Pr)− In(Pr)I ′

n(Pr)] = 1. (53)

Then, using equations (46) and (47), we find

D(s, r2, r1) = 1

Hn(Pr2, Pr1)

(
Wn(Pr2, Pr1) 1

1 Wn(Pr1, Pr2)

)
, (54)

where
Wn(Pr j , Pri ) = Pri [In(Pr j )K

′
n(Pri )− I ′

n(Pri )Kn(Pr j )],

Hn(Pr j , Pri ) = In(Pri )Kn(Pr j )− Kn(Pri )In(Pr j ).
(55)

The contribution from quantum numbers s = (n, p) to the kernel for the free field theory in
the layer, up to an irrelevant constant factor, is then

K (0)(s, c2, r2, c1, r1) = 1√|Hn(Pr2, Pr1)| exp

(
−1

2
c · D(n, p, r2, r1) · c

)
. (56)

4.1. Asymptotic behaviour

We use the definition of K (0)(s, c′, r ′, c, r) in equation (56) and the asymptotic behaviour for
the Bessel functions given in equation (A.3) to derive the behaviour of K (0) as r → 0 and
r → ∞. Because we need to consider the case when the Debye mass m is zero we carry out
the analysis using dimensionful coordinates. This follows easily if we interpret p and r as
carrying dimension, with P2 = p2 + m2, and use the rescaling D → βεD.

4.1.1. r ′ → ∞. In the limit r ′ → ∞ (t ′ → ∞) the natural boundary condition for the scalar
field is φ = 0, which corresponds to c′ = 0, and we impose this condition from now on. For
the various cases we find

p = m = 0:

K (0)(n = 0, 0, c′ = 0, r ′; c, r) ∼ 1√
log(r ′/r)

exp

(
−βε

2

c2

log(r ′/r)

)

= 1√
t ′ − t

exp

(
−βε

2

c2

(t ′ − t)

)
. (57)

This is the free particle kernel for Euclidean time [23]. It is the one case where the kernel
is not separable in the c, c′ variables. The important feature of this result for the charge
neutrality condition is that

∂

∂c
log(K (0)) = −βε c

(t ′ − t)
→ 0 as t ′ → ∞. (58)

Also

K (0)(n > 0, 0, c′ = 0, r ′; c, r) ∼ √
2n exp

(
−n

2
log r ′/r

)
exp

(
−βε

2
nc2

)
. (59)
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This is the harmonic oscillator ground state in c with associated energy E0 = n/2. The
prefactor contains the correct (Euclidean) time dependent factor exp(−n/2(t ′ − t)).

P = √
p2 + m2 > 0: We define the function Vn(z) by

Vn(z) = − zK ′
n(z)

Kn(z)
. (60)

Then

K (0)(n, p, c′ = 0, r ′; c, r)

∼ (2πPr ′)1/4 exp

(
−1

2
Pr ′

)
1√

Kn(Pr)
exp

(
−βε

2
Vn(Pr)c2

)
. (61)

The related Schrödinger equation, which has a time dependent Hamiltonian, satisfied by
K (0)(s, c′, r ′; c, r) considered as a function of c and t = log(r), is

− ∂

∂ t
ψ(s, c, t) =

(
−1

2

∂2

∂c2
+

1

2

(
P2e2t + n2) c2

)
ψ(s, c, t). (62)

It can be verified that the different forms listed above in the limit t ′ → ∞ do, indeed, satisfy
this equation.

4.1.2. r → 0. In the limit r → 0 (t → −∞), for the various cases, we find

p = m = 0:

K (0)(n = 0, 0, c′, r ′; c, r) ∼ 1√
log(r ′/r)

exp

(
−βε

2

(c − c′)2

log(r ′/r)

)

= 1√
t ′ − t

exp

(
−βε

2

(c − c′)2

(t ′ − t)

)
. (63)

This is the free particle kernel for Euclidean time [23]. As before
∂

∂c′ log(K (0)) → 0 as t → −∞ (64)

which we shall show ensures charge neutrality. Also

K (0)(n > 0, 0, c′, r ′; c, r) ∼ √
2n exp

(
−n

2
log r ′/r

)
exp

(
−βε

2
n(c2 + c′2)

)
. (65)

This is the harmonic oscillator ground state in both c and c′ with associated energy
E0 = n/2. The prefactor contains the correct (Euclidean) time dependent factor
exp(−n/2(t ′ − t)).

P = √
p2 + m2 > 0: We define the function Un(z) by

Un(z) = z I ′
n(z)

In(z)
. (66)

Then

K (0)(n = 0, p, c′, r ′; c, r) ∼ 1√− log(r)

1√
I0(Pr ′)

exp

(
−βε

2
U0(Pr ′)c′2

)
, (67)

K (0)(n > 0, p, c′, r ′; c, r) ∼ exp
(

1
2 n log(Pr)

)

× exp

(
−βε

2
nc2

)
1√

In(Pr ′)
exp

(
−βε

2
Un(Pr ′)c′2

)
. (68)

As before these asymptotic forms satisfy the related Schrödinger equation.
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4.2. The cylindrical membrane

The i th layer of a system of N concentric cylindrical layers has volume Vi and is bounded by
the cylindrical surfaces Si and Si+1, where S0 is the innermost surface and SN is the outermost.
The Debye mass and dielectric constant associated with the bulk reservoir connected to the i th
layer are denoted by mi , εi , respectively. The tube is of length L in the z-direction which is
parallel to the symmetry axis of the cylinders. The contribution to the grand partition function
from this system is the convolution

�M =
∫

Dc
∏

s

N−1∏
i=0

Ki (s, ci+1(s), ri+1; ci(s), ri ), (69)

where s = (n, p) as before and the field measure is

Dc =
∏

s

N∏
i=0

dci(s), (70)

with boundary condition cN (s) = 0∀s.
The grand partition function for the whole system including the bulk reservoirs to which

the different layers connect is

� = �M

�B
�B =

N−1∏
i=0

�Bi (Vi), (71)

where �Bi (Vi) is the bulk grand partition function for i th layer of volume Vi . This can
be calculated using the bulk action defined in equation (14) with chemical potential µi and
dielectric constant εi for a torus of volume Vi .

The free energy is then F = −kBT log� and the forces acting on the interfaces and the
stability of the system can be deduced from F . From equation (12) and the earlier discussion
the perturbation theory for F can be developed as a loop expansion with expansion parameters
gi = milB where mi is the Debye mass of the i th layer and lB is the Bjerrum length. The
expansion is a cumulant expansion about the quadratic, or free, field theory which is described
by the quadratic approximation to the grand partition function, �(0), of the system:

�(0) = �
(0)
M

�
(0)
B

,

�
(0)
M =

∫
Dc

∏
s

N−1∏
i=0

K (0)
i (s, ci+1(s), ri+1; ci(s), ri ), (72)

and with �(0)B defined in terms of the free field action as described just above. Each term in
the product over s on the rhs of equation (72) has an exponent which is a quadratic form in the
interface field variables c(s), where the notation c(s) has been used to signify the vector of all
the ci(s), 0 � i � N , associated with the given set of quantum numbers s. The integral over
the boundary fields with respect to the measure Dc is therefore Gaussian, and the integration
can be done exactly. The free energy F (0) = −kBT log�(0) contains the ideal gas contribution
and this one-loop term. The one-loop term consists of a contribution from the normalization
factors of the K (0)

i , and from the determinant of the matrix defining the quadratic form in
the exponent which arises from the Gaussian integration over the boundary field values. The
Casimir forces acting on the system are determined by the one-loop contribution. In [4] the
attractive Casimir forces acting between the faces of a planar soap film were discussed and
derived in this manner, and the contribution to two-loop order in the cumulant expansion of the
interaction �S defined in equation (13) for the planar film was presented in [8]. In general,
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the application of the loop perturbation theory can be carried out in the same way for any
symmetrical layered electrolytic system such as that constructed from concentric cylinders or
spheres. This perturbation theory will be pursued in a future publication. In the next section
we analyse the case of a thin cylindrical membrane for which N = 3.

5. The Casimir force for a dielectric tube

In figure 1 the cross section of a tube of inner radius R formed from a membrane of thickness
δ is shown, with radii for the boundary surfaces defined to be

r0 = 0, r1 = R − δ

2
, r2 = R +

δ

2
, r3 = ∞, (73)

with δ � R.
In this paper we concentrate on the Casimir force acting on the tube described above and

shown in figure 2 in which the electrolyte densities, and hence the Debye masses, are zero in
all three layers, the membrane is of fixed thickness δ with dielectric constant ε2 = εM = 2εvac,
and the inner and outer layers are filled with water so that ε1 = ε3 = εW = 80εvac. The Casimir
force is thus due purely to the discontinuity in the dielectric constants at the membrane surfaces
and is a function of the radius R of the inner cylindrical layer. We shall show that the Casimir
force in this case is attractive, tending to collapse the tube. The tube is of length L which we
assume is large on any relevant scale, and we assume that there is a reservoir of membrane
so that the tube radius R can change without the membrane needing to stretch. For example,
the system can be thought of as made from a flat sheet of membrane onto which the tube
connects and which acts as a reservoir of membrane as the tube expands or contracts, as shown
in figure 2. Alternatively, the membrane can be folded at one end of the tube and act as a
reservoir. Both scenarios are possible in biological systems where the membrane is a lipid
bilayer, although for the latter it is difficult to calculate the free energy of a given volume of
lipid in the reservoir—so that presents a problem of normalization. However, it should be
emphasized that this picture may nevertheless be an important feature of the stability of lipid
tubules and needs further analysis. In either case, because we assume that the membrane is not
stretched as the area of the tube increases, there is no elastic energy stored in the tube except
that due to the curvature, and the surface area of the system is constant. In what follows we
shall assume a reservoir of flat membrane as shown in figure 2.

As an intermediate step we define the grand partition function, �(0)MW(R, δ), for the
membrane normalized by that of an equivalent water-filled region, and its associated free
energy F (0)

MW(R, δ), by

�
(0)
MW(R, δ) = �

(0)
M (R, δ)

�
(0)
W (R = ∞, δ)

, F (0)
MW(R, δ) = −kBT log�(0)MW(R, δ), (74)

where�(0)M is given by equation (72), and where�(0)W is the grand partition function of a system
filled with water only: �(0)W = �

(0)
M for δ = 0. For the grand ensemble with a reservoir

consisting of a flat membrane of the same thickness, shown in figure 1, we must subtract the
free energy of a flat membrane of equivalent area to the tube. We then find that the free energy
appropriate for calculating the Casimir force due to the tube geometry is

FC(R, δ) = F (0)
MW(R, δ) − 2πRL F∞(δ), (75)

where

F∞(δ) = lim
R→∞

F (0)
MW(R, δ)

2πRL
, (76)
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where F∞(δ) is the free energy per unit area of flat membrane of thickness δ. Using the
expression for�(0)M (R, δ) in equation (72) and the asymptotic expressions for K (0) as r → 0 in
equations (65) and (66), it can be seen that the dependence on c0(s), which are the coefficients
determining the boundary field value φ0(x) at r = 0, cancels out ∀s between the numerator
and denominator in equation (74). This is independent of whether the integrations over the
c0(s) are done or not; it is a consequence only of separability in the limit r → 0 or, in the
case n = 0, K (0) becoming independent of the c0(s). Thus we may set c0(s) = 0 ∀s in what
follows and omit the integrations over the c0(s).

The difference between the numerator and denominator in �(0)MW(R, δ) in equation (74) is
then due to the different contributions of the membrane layer between radii r1 = R − δ/2 and
r2 = R + δ/2 which has dielectric constant εM in the numerator but εW in the denominator.
We then have

�
(0)
MW(R, δ) =

∫ ∏
s

dc1(s) dc2(s)Q
(0)(s, c2(s), r2; c1(s), r1)K

(0)
1 (s, c2(s), r2; c1(s), r1),

(77)

where

Q(0)(s, c2, r2; c1, r1) = lim
r3→∞
r0→0

K0(s, 0, r3; c2, r2)K2(s, c1, r1; 0, r0)

K (s, 0, r3; 0, r0)
, (78)

where in Q(0) the dielectric constant in the denominator kernel is εW. From the asymptotic
expressions in equations (57)–(68) we find that Q(0) has a simple form for (n, p) �= (0, 0)
(see s = (n, p)):

Q(0)(s, c2, r2; c1, r1) =
[

βεW

2π |Kn(pr2)In(pr1)|
]1/2

× exp

(−βεW

2
Vn(pr2)c

2
2

)
exp

(
−βεW

2
Un(pr1)c

2
1

)
, (79)

where Un, Vn are defined in equations (67) and (60), respectively. Note that all Debye masses
are zero here. For large argument Un, Vn → 1, and so both Gaussian forms are convergent
and integrable. Q(0) takes the form of a normalized product of a generalization of harmonic
oscillator ground state wavefunctions in c1 and c2, and satisfies the appropriate Schrödinger
equations in these variables. For large R and n > 0 these functions become the usual ground
state oscillator wavefunctions with mω = βεWn, which agrees with the analysis of the planar
film of [4].

For (n, p) = (0, 0) we find

Q(0)(s = 0, c2, r2; c1, r1) = lim
r3→∞
r0→0

[
βεW

2π

t30

t32t10

]1/2

exp

(
−βεW

2

c2
2

t32

)
exp

(
−βεW

2

c2
1

t10

)
,

(80)

where ti = log ri and ti j = ti − t j . Also, we have that

K (0)
1 (s = 0, c2(s), r2; c1(s), r1) =

[
βεM

2π

1

t21

]1/2

exp

(
−βεW

2

(c1 − c2)
2

t21

)
, (81)

and so we find that the contribution from the s = 0 mode to the partition function is

�
(0)
MW(s = 0, R, δ) = lim

r3→∞
r0→0

[
εWεMt30

εW(εW − εM)t21 + εWεMt30

]1/2

= 1. (82)
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Thus, the zero mode does not contribute to the free energy of the membrane. However, it is
the relevant mode for showing that the charge neutrality condition holds. The total charge
operator � is given by

� = εW

∫
dx E(x, r2 + η)− εW

∫
dx E(x, r1 − η), (83)

where E(x, r) is the radial component of the electric field and η is a small positive length;
thus, we measure the field in the water just outside the membrane surfaces. We have that

E(x, t) = − ∂

∂r
〈φ(x, r)〉 = − 1

J (t)

〈
∂

∂ t
φ(x, t)

〉
= − 1

J (t)βεW
〈π(x, t)〉, (84)

now considering E and φ as functions of t = log(r). Here π(x, t) is the momentum
operator conjugate to φ(x, t) and is given by π(x, t) = βεφ̇(x, t) using standard theory.
The Schrödinger representation of π(x, t) [22] then gives

E(x, t) = 1

J (t)βε
〈φ, t| δ

δφ(x)
|φ, t〉. (85)

The contribution to 〈�〉 from the integral over the surface at r = r1 is then

〈�1〉 = 1

J (t)β
〈φ̃, t| δ

δφ̃(0)
|φ̃, t〉, (86)

where φ̃(0) is the zero-mode field. Using equations (58) and (80) we then find

〈�1〉 = lim
t0→−∞

εW

J (t1)

〈φ̃, t1|φ̃(0)|φ̃, t1〉
t1 − t0

= 0. (87)

A similar result holds for 〈�2〉, the contribution to 〈�〉 from the surface integral at r = r2; thus
we find that 〈�〉 = 0. This analysis can be repeated to show that all moments of � vanish:
〈�n〉 = 0,∀n > 0; it is this condition that ensures charge neutrality of the system.

We now calculate the free energy F (0) by summing over all s = (n, p)mode contributions.
From the previous section we find

K (0)
1 (s, c2(s), r2; c1(s), r1)

=
[

βεM

2π |Hn(pr2, pr1)|
]1/2

exp

(
−βεM

2
c(s) · D(s, r2, r1) · c(s)

)
, (88)

where as before c = (c1, c2) and

D(s, r2, r1) = 1

Hn(pr2, pr1)

(
Wn(pr2, pr1) 1

1 Wn(pr1, pr2)

)
, (89)

and Wn and Hn are defined in equation (55). Using equations (77), (79) and (88) we find

�
(0)
MW(R, δ) =

∫ ∏
s

1

2π
dc1(s) dc2(s)

[
βεW

|Kn(pr2)In(pr1)|
]1/2 [

βεM

|Hn(pr2, pr1)|
]1/2

× exp

(
−β

2
c(s) · EM(s, r2, r1) · c(s)

)
, (90)

where

EM(s, r2, r1) = εMD(s, r2, r1) + εWX(s, r2, r1), (91)

and

X(s, r2, r1) = diag[Un(pr1), Vn(pr2)], (92)
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is a 2 × 2 diagonal matrix. A more useful alternative expression is

�
(0)
MW(R, δ) =

(
εM

εW

)1/2 ∏
s

∫
dc(s) exp

(
− β

2 c(s) · EM(s, r2, r1) · c(s)
)

∫
dc(s) exp

(
− β

2 c(s) · EW(s, r2, r1) · c(s)
) , (93)

where

EW(s, r2, r1) = εW(D(s, r2, r1) + X(s, r2, r1)). (94)

The denominator is the contribution from a pure water-filled system. The two expressions for
�
(0)
MW(R, δ) are the same since, using the Wronskian identity, equation (25), we find

det[D(s, r2, r1) + X(s, r2, r1)] = −[Kn(pr2)In(pr1)Hn(pr2, pr1)]−1. (95)

Then we have

�
(0)
MW(R, δ) = 1

2

(
εM

εW

)1/2 ∏
s

det[B(s, r2, r1)],

B(s, r2, r1) =
[

1 + (X(s, r2, r1) + D(s, r2, r1))
−1X(s, r2, r1)

(εW − εM)

εM

]
, (96)

and the total free energy of the tube is

FC(R, δ) = F (0)
MW(R, δ) − F (0)

f (δ),

F (0)
MW(R, δ) = −1

2
kBT log

(
εM

4εW

)
+ L

∑
n

∫
d p

2π
F (0)

MW(s, R, δ),

F (0)
MW(s, R, δ) = −kBT log(det[B(s, r2, r1)]). (97)

The required free energy FC(R, δ) is then given by equations (74) and (75). Using
equations (53) and (47) it can be verified, as expected, that F (0)

MW(R, δ = 0) = 0. From
equation (93) we find also that F (0)

MW(R, δ) = 0 when εW = εM.

6. Evaluation of the Casimir energy

In this section we evaluate the Casimir energy for the dielectric tube as a function of the inner
radius R formed from a membrane of fixed thickness δ and dielectric constant εM. The regions
interior and exterior to the tube are water filled with dielectric constant εW. The cross section
of the tube is shown in figure 2 and the length of the tube is aligned along the z-axis.

The result for the free energy of the tube, FC(R, δ), is given in equations (97) as a sum
over the mode number n and an integral over the wavevector, p, in the z-direction. We evaluate
the sum and integral numerically and present results in the next section for various values of
δ. However, as is usual in many cases, the calculation is dominated by the ultraviolet (UV)
properties of the integrand and an UV cut-off must be imposed to achieve a finite result. We
examine the UV properties of the integral and calculate the leading divergent contributions
analytically. These divergent contributions, which are regulated by the UV cut-off, agree with
the prediction for them obtained from the full numerical calculation. We also verify that the
R → ∞ limit of F (0)

MW(R, δ) agrees with the result in the planar film case for a film of thickness
δ. It is convenient to define the following constants which encode the dielectric properties of
the system:

� = εW − εM

εW + εM
, γ = εW

εM
− 1 = 2�

1 −�
. (98)
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After some algebra and use of the Wronskian identity equation (53) we find

(D(s, r2, r1) + X(s, r2, r1))
−1 =

(
In(pr1)Kn(pr1) In(pr1)Kn(pr2)

In(pr1)Kn(pr2) In(pr2)Kn(pr2)

)
. (99)

Using the expression for the diagonal matrix X in equation (92) we find that B(s, r2, r1),
whose determinant is required for the evaluation of �(0) in equation (96), is

B(s, r2, r1) =
(

1 + γ I ′
n(pr1)Kn(pr1) −In(pr1)K ′

n(pr2)

I ′
n(pr1)Kn(pr2) 1 − γ In(pr2)K ′

n(pr2)

)
. (100)

The important feature of B is that the on-diagonal elements are the separate contributions
from the surfaces at r = r1 and r2 and the off-diagonal terms are the contribution from the
interaction between the surfaces. In particular, it will be shown later in this section that the off-
diagonal elements fall off exponentially with the surface separation δ like exp(−2

√
(p2+m2)δ).

This fact has the consequence that the inter-surface interaction becomes negligible for large
separations or for large wavevector p. The corollary is that any UV divergences, which are
due to large p behaviour of the integrand, arise solely from the separate surface contributions
and that the inter-surface interaction gives an UV finite contribution. We therefore explicitly
separate the terms in F (0)

MW(R, δ) into these respective contributions. We have

F (0)
MW(R, δ)

LkBT
= 1

r1
g(�r1,�) +

1

r2
g(�r2,−�) + h(r1, r2,�,�) + m(�,�), (101)

where

g(x,�) = 1

2π

∑
n

∫ x

0
du log[1 +�(In(u)Kn(u))

′],

h(r1, r2,�,�)

= 1

2

∫ �

0

d p

π

∑
n

log

[
1 +

4�2 p2r1r2 I ′
n(pr1)In(pr1)K ′

n(pr2)Kn(pr2)

(1 +�pr1[In(pr1)Kn(pr1)]′)(1 −�pr2[In(pr2)Kn(pr2)]′)

]
,

m(�,�) = −1

2

∫ �

0

d p

π

∑
n

log(1 −�2). (102)

The contribution LkBT g(�r,�)/R is the free energy of an isolated cylinder of length L, radius
R and dielectric constant εM in a medium of dielectric constant εW. Thus the first two terms
in equation (101) are the respective separate contributions of the inner and outer cylindrical
regions that form the layer of thickness δ = r2 − r1; the term LkBT h(r1, r2,�,�) is the
contribution from the interaction between the cylinders. As expected, the function g(x,�)
diverges as x → ∞ and so this term in the free energy must be regulated by taking a finite
non-zero cut-off� = π/a, where a is the UV cut-off length. Viewed as a Taylor expansion in
�we find that the O(�) term of g is independent of r and so in the free energy the contributions
proportional to� cancel. This to be expected on physical grounds since by examining the limit
of a diffuse system one can see that any term proportional to�must be a self-energy term [25].
The term of order �2 of g can be evaluated using Bessel function summation theorems [24].
This term is given by

g2(x,�) = −�
2

4π

∫ x

0
du u2

∑
n

[In(u)Kn(u)]′
2
. (103)

We define R∗(r1, r2, φ) =
√

r2
1 + r2

2 − 2r1r2 cos(φ) and from [24] we have

K0(u R∗(r1, r2, φ)) =
∑

n

In(ur1)Kn(ur2)einφ. (104)
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Then

K0(2u R∗(1, 1, φ)) =
∑

n

In(u)Kn(u) einφ 
⇒

2 sin(φ/2) K ′
0(2u sin(φ/2)) =

∑
n

[In(u)Kn(u)]′einφ. (105)

Thus

∑
n

[In(u)Kn(u)]
′2 = 2

π

∫ 2π

0
K 2

1 (2u sin(φ/2)) sin2(φ/2), (106)

where the Bessel function identity K ′
0(u) = −K1(u) has been used. By substitution into

equation (103) and careful manipulation of the double integral we find that

g(x,�) = − 1
256�

2
[
6 log(x) + 30 log 2 + 6γ − 11

]
+ O(�4) + O(1/x). (107)

Similarly, the finite contribution h(r1, r2,�,�) can be expanded and the O(�2) term evaluated.
We have

h2(r1, r2,�,�) = 2

π
�2

∫ �

0
d p r1r2

∑
n

p2 I ′
n(pr1)In(pr1)K

′
n(pr2)Kn(pr2). (108)

Using equation (104) we have∑
n

p2 I ′
n(pr1)In(pr1)K

′
n(pr2)Kn(pr2)

= 1

2π

∫ 2π

0
dφ

∂K0

∂r1
(pR∗(r1, r2, φ))

∂K0

∂r2
(pR∗(r1, r2, φ)). (109)

Because the integral is convergent we may set � to ∞. We find

h2(r1, r2,�,�) = �2r1r2

π

∫ ∞

0
du K1(u)

2
∫ 2π

0
dφ

(r1 − r2 cos(φ))(r2 − r1 cos(φ))

(r2
1 + r2

2 − 2r1r2 cos(φ))5/2
, (110)

with r1 = R − δ/2, r2 = R + δ/2. After manipulation we find that

h2(r1, r2,�,�) = 3

64

�2

R

1 − y2

y2

∫ ∞

0
dz

y2z4 − 1

(1 + y2z2)1/2(1 + z2)5/2
, (111)

where y = δ/2R. This gives

h2(r1, r2,�,�) = −�
2 R

8δ2
+

3

64

�2

R

[
− log

(
δ

2R

)
+ 2 log 2 − 1

2

]
. (112)

6.1. R → ∞, δ fixed

To calculate FC(R, δ) in the grand canonical ensemble we must subtract from F (0)
MW(R, δ) the

free energy F∞, defined in equation (76), for a flat membrane of the same area and thickness.
This has been calculated in previous work [4] but is it instructive to derive it directly from
equation (101). In the limit R → ∞ the arguments of all functions for p �= 0 become large
and we find that the calculation is dominated by large n. The leading asymptotic results given
in equation (A.3) will be sufficient for computing F (0)

MW(s, R, δ) in the large R limit.
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From equation (A.3) we have for large n that

In(pr) ∼ 1√
2π

1

(n2 + p2r2)1/4
exp

[
nη(pr/n)

]
,

Kn(pr) ∼
√
π

2

1

(n2 + p2r2)1/4
exp

[−nη(pr/n)
]
,

I ′
n(pr) ∼

√
1

2π

(n2 + p2r2)1/4

pr
exp

[
nη(pr/n)

]
,

K ′
n(pr) ∼ −

√
π

2

(n2 + p2r2)1/4

pr
exp

[−nη(pr/n)
]
.

(113)

In the limit R → ∞ it is better to define a new two-dimensional wavevector k = (n/R, p)
(i.e., k1 = n/R, k2 = p), since we then find that the R → ∞ limit can be formulated in terms
of functions with finite arguments. The measure is then

L
∑

n

∫
d p

2π
→ 2πL R

∫
d2k

(2π)2
. (114)

Note that A = 2πL R is the area of the tube.
From equation (113) and using the definition of η(z) in equation (A.4) we obtain

η
( p

n
(R + δ/2)

)
− η

( p

n
(R − δ/2)

)
∼ k2δη

′ (k2/k1) = (k2
1 + k2

2)
1/2δ ≡ kδ. (115)

The next correction is O(δ3/R2) which is negligible in the R → ∞ limit. Then we find

(In(pr1)Kn(pr1))
′ ∼ (In(pr2)Kn(pr2))

′ ∼ 0, (116)

I ′
n(pr1)In(pr2)Kn(pr1)K

′
n(pr2) ∼ − 1

4 p2r1r2
exp(−2kδ). (117)

Using equation (116), we see immediately that the contributions from the individual surfaces
vanish in this limit. The non-zero contributions then arise only from h(r1, r2,�,�) and
trivially from m(�,�) in equation (102). On substitution into equation (101) we find in the
large R limit that

βF∞(δ) = − A

2

∫
d2k

(2π)2
[
log

(
1 −�2

)− log
(
1 −�2 exp(−2kδ)

)]
. (118)

We consider this result in the limit δ → 0. The integral in equation (118) must be regulated
with a UV cut-off k � �. The second logarithm in this equation can be expanded and the
series in �2 integrated term by term. If we assume that �δ � 0 then we find

βF∞(δ) = − A

8π

[
�2 log

(
1 −�2

)
+

1

2δ2

∑
m

�2m

m3

]
. (119)

The result behaves like 1/δ2 but only as long as the assumption �δ � 0 holds, since terms
containing the factor exp(−�δ) have been ignored. If all terms are kept then, of course,
limδ→0 F∞(δ) = 0.

On subtracting 2πRLkBT F∞ from F (0)
MW to obtain the grand free energy FC we see that

the first term in F∞ cancels the contribution from m(�,�) in equation (101) identically. We
retain the second term in F∞ at O(�2) and it cancels a similar term in the evaluation of the
integral for h2(r1, r2,�,�). This term is exhibited explicitly in equation (112). Putting our
results together we find that κC defined in equation (5) is given by
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κC = �2

64

[
3 log

(
πδ

a

)
+ 6 log 2 + 3γE − 4

]
+�4 B(�), (120)

where γE is Euler’s constant and the constant in the brackets is evaluated to be 0.029 54 . . ..
We note an important point which is that the log(R) dependences from the functions g and h
cancel exactly giving a leading order behaviours of FC ∼ 1/R.

7. Numerical results

In order to calculate the Casimir energy as a function of R and δ we evaluate FC(R, δ), defined
in equations (97) and (101), numerically. The free energy FC(R, δ) is normalized to zero for
R = ∞, and is defined in terms of the free energy F (0)

MW(R, δ) which is normalized to be zero
when the dielectric constant of the membrane, εM, is set equal to that for water: εM = εW.
Here, F (0)

MW(R, δ) is given as a sum over n and integral over p of F (0)
MW(s, R, δ) (s = (n, p)),

itself defined in equation (97).
To carry out both the summation over n and the integration over p we use the VEGAS

integration package [26] which is an efficient algorithm which uses importance sampling to do
multidimensional integrations. Although we are dealing with a discrete sum over n it is easy
to adapt the integrand so that it is a function of the continuous variable x through the relation

n(x) = R Int(x̂), x̂ = x − 0.5(1 − sgn(x)). (121)

Then n(x) takes integer values necessary for the summation whilst x is used as a continuous
integration variable by VEGAS. Both the summation over n and the integration over p are
done by efficient importance sampling techniques, and an accurate answer can be obtained.
To impose the needed ultraviolet regulator or cut-off, we set k = (n(x)/R, p) and integrate
over the region −π/a � k � −π/a, k = |k|.

The evaluation of the integrand poses some difficulties since, as we have seen in the
previous section, the integrand is dominated by large values of k, and hence the arguments
of the Bessel functions in the definition of F (0)

MW(s, R, δ), equations (101) and (102), become
very large indeed. In this case the function In (Kn) suffers from floating point overflow
(underflow), which can be seen easily from the asymptotic forms given in equation (A.3).
However, in contrast the products over the Bessel functions which constitute each term in
equation (102) do not suffer in this way. This also can be seen from equation (117) where
the increasing and decreasing exponential behaviours of In and Kn , respectively, compensate
to give the behaviours exp(−2kδ). To construct a robust integrand we used routines for the
full Bessel functions when k was sufficiently small and used the appropriate asymptotic form
given in (A.3) when either n or p, or both, became large. It was then possible to cancel the
diverging and vanishing exponential factors against each other, so obtaining a well-defined
integrand computationally.

We take εW/εM = 40 and evaluate FC(R, δ) as a function of R in nanometres, and
δ = 5 nm, 10 nm and for various values of the cut-off length a. Because there is no electrolyte
the temperature dependence is purely in the factor of kBT multiplying our calculation. From
equation (120) it is clear that, as is true in most applications, the Casimir energy is dominated
by the UV cut-off behaviour and hence by the value chosen for a. It is not fully clear what the
correct value for a should be since the microscopic properties of the membrane interface are
not properly included in the analysis. Typically, we would expect a to be the scale of the inter-
molecular spacing of the molecules forming the membrane or of water molecules. For this
calculation a reasonable value is a ∼ 0.5 nm. To test the validity of our UV analysis we first
investigate how FC(R, δ) behaves for very small a and we choose a = 0.05, 0.1, 0.2, 0.5 nm.
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Table 1. For various values of � and δ/a we compare the prediction of equation (120) with the
result of simulation and deduce a numerical value for B(�2). Owing to small systematic errors in
the numerical calculation of the Bessel functions there is a negligible discrepancy for very small
� but B(�2) is seen to be a constant function from evaluations at larger �. We see that the result
for FC from equation (120) is in very good agreement with the full calculation. Various values of
δ and a were used but typically δ = 1 − 10 nm.

O(�2) coeff. of 1/R Coeff. of 1/R
� δ/a from equation (120) from simulation B(�2)

78/82 103 −0.342 −0.443 0.123
78/82 102 −0.244 −0.346 0.123
0.6 103 −0.1361 −0.1520 0.123
0.6 102 −0.0972 −0.0162 0.123
0.2 103 −0.0151 −0.0162 —
0.6 103 −0.0038 −0.0040 —

The function B(�2) receives contributions from the both the g and h terms in equation (28)
with B(0) �= 0. Note that there are no odd terms in� in the leading 1/R behaviour of FC since
to leading order one may set δ/R = 0 (equivalently R1 = R2) in the leading order behaviour
of g and in the denominator of the second term in the logarithm of the integral defining h.
This is a consistent parametrization whilst δ � a. The limit δ → 0 must be taken carefully
and when δ < a the separation of F (0)

MW in equation (101) into contributions from functions g
and h is not useful since h develops the UV divergence compensating that in g and we find
limδ→0 FC = 0, as expected; in essence, the larger of (δ, a) acts as the U V cut-off on the
integral defining h.

In table 1, for various values of � and δ/a, we compare the prediction of equation (120)
with the result of numerical evaluation and deduce a numerical value for B(�2). Owing to
small systematic errors in the numerical calculation of the Bessel functions there is a tiny
discrepancy for very small � but B(�2) is seen to be a constant function from evaluations at
larger� and we see that B(0) is plausibly 1/8.

The physical value of the UV cut-off length can only be determined phenomenologically
in this model. This is because the model is an effective field theory in which the dynamics
of the molecular electric dipoles is described by the dielectric constant which is a static long
range parameter. The field modes with large k and n probe the static short distance properties
of the model and so a more refined field theory is needed for these scales. It is unclear whether
the molecular nature of the lipid has an effect on the UV cut-off but it would seem most likely
that the effective values of εW at short scales are dominant in this calculation. The effect is
encoded in the value of a.

8. Conclusion

In this paper we have developed the theory for a general approach to the calculation of the
electrostatic free energy for a system of symmetrically layered electrolytic membranes. The
definition of symmetrical is that the Laplacian is separable and that the coordinate direction
normal to the layers can be interpreted in terms of a Euclidean time variable, t . The partition
function for a layer bounded by surfaces defined by t = ti and t = t j , ti < t j , can then be written
in terms of the Feynman (Euclidean) time evolution kernel from ti to t j by invoking the well-
known connection between this formalism and statistical mechanics. The method is a general
extension of our work concerning flat membranes [4, 27, 22, 8] and allows the full interacting
sine–Gordon field theory in equation (8) for electrolytic layers to be studied systematically,
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including the perturbation theory in the coupling constant g defined by g = lB/ lD, where
lB and lD are the Bjerrum and Debye lengths, respectively. Geometries of interest to which
this approach applies include cylindrical and spherical ones. In this paper the general theory
developed in section 3 is applied to the system of cylindrical layers each filled with a pure
dielectric medium where the dielectric constant differs between layers. The analysis of this
system is based on the free harmonic field theory which is exactly soluble and which is the
theory about which a perturbative expansion for the effect of fluctuations takes place. In the
succeeding sections the particular problem of the free energy of a tube of dielectric material
immersed in water is studied and the Casimir force calculated. The tube is a simple model
for the t-tubule formed from lipid membrane in particular kinds of muscle cells and the object
of the calculation is to investigate the size and form of the Casimir force and whether it can
act to stabilize the tube against the bending stress that acts to decrease the tube curvature and
hence increase its radius. In order to calculate the relevant free energy we assumed that the
tube was connected to an infinite reservoir of flat membrane and so worked with the grand
ensemble describing this system. The assumption about which ensemble is the relevant one
is crucial to answering questions concerning tubule stability since in the grand ensemble the
nature of the lipid or membrane reservoir determines its bulk free energy and hence affects
the energy of conformation of the tube; a flat membrane reservoir will differ for a reservoir
which stores spare lipid at the end of the tubule essentially as crumpled membrane. Clearly
also, if there is no reservoir at all, so that the ensemble is canonical, then any increase in the
surface area of the tube as it expands will lead to a lower density of lipids in the surface and a
concomitant increase in the surface energy over and above that due to the bending stress; this
is a fundamentally different situation to the one we assume.

The complete mathematical expression for the thermal Casimir free energy correct to
one-loop order for the cylindrical system studied is given in equations (101) and (102). The
contribution to the bending rigidity is negative and is found by expanding to leading order in�2

and the curvature 1/R to give the result in equation (120). To obtain a finite result an ultraviolet
cut-off on the integral over the wavevector k in equation (102) is needed. This arises because
the sine–Gordon field theory with varying dielectric constant is an effective low energy theory
with the dielectric constant as a long wavelength effective parameter. The ultraviolet cut-off
arises from the microscopic theory from which the effective field theory is derived. We note
that higher order terms in k in the integrands of equation (102) will give rise to corrections to
the bending rigidity of higher order in the curvature. The need for an ultraviolet cut-off and the
dependence of the bending rigidity on the wavevector has been observed also by Netz [3] in an
alternative approach to these issues and the elucidation of the relationship between these two
approaches and the relationship with the underlying microscopic field theory in this context
would be useful.

In the case studied here we see from table 1 that for a lipid bilayer tube in water with
δ = 10 nm and a = 0.1 nm we find κC = 0.346. It is possible to include the contributions from
the modes with non-zero Matsubara frequencies, a calculation in progress, but we can expected
at most a factor of two or so enhancement on past experience of similar calculations [2], and
so κC ∼ 1 is a likely largest value. These are at the lowest end of values for κB for known lipid
bilayers in water [10, 11]. However, Würger [11] calculates κB for surfactant films, analysing
the role of hydrophobic tails, as a function of the tail length and the area per molecule, and
finds a wide range of values for κB (κB = πκ , with κ from [11]) including values small enough,
corresponding to soft interfaces, to accommodate our result. Thus it is conceivable that there
can be small tubes formed from soft membranes in water for which the bending forces tending
to expand the radius are compensated by the Casimir attraction, and the tube is stabilized by
sub-leading O(1/R2) forces.
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Appendix. Asymptotic behaviour of modified Bessel functions

For completeness we include the asymptotic behaviours of the modified Bessel functions In

and Kn as given in [28]. For z → 0:

In(z) ∼ (z/2)n

n!
Kn(z) ∼ 1

2 n!(z/2)−n (n > 0)

K0(z) ∼ −{log(z/2) + γ }I0(z).

(A.1)

For z → ∞:

In(z) ∼
√

1

2πz
ez

{
1 − µ− 1

8z
+
(µ− 1)(µ− 9)

2!(8z)2
− · · ·

}

Kn(z) ∼
√
π

2z
e−z

{
1 +

µ− 1

8z
+
(µ− 1)(µ− 9)

2!(8z)2
− · · ·

}
,

(A.2)

where µ = 4n2.
For n → ∞:

In(nz) ∼ 1√
2πn

enη

(1 + z2)1/4

{
1 +

∞∑
k=1

uk(t)

nk

}

Kn(nz) ∼ π√
2n

e−nη

(1 + z2)1/4

{
1 +

∞∑
k=1

(−1)k
uk(t)

nk

}

I ′
n(nz) ∼ 1√

2πn

(1 + z2)1/4

z
enη

{
1 +

∞∑
k=1

vk(t)

nk

}

K ′
n(nz) ∼ − π√

2n

(1 + z2)1/4

z
e−nη

{
1 +

∞∑
k=1

(−1)k
vk(t)

nk

}
,

(A.3)

where

t = 1√
1 + z2

, η =
√

1 + z2 + log
z

1 +
√

1 + z2
, (A.4)

and uk(t), vk(t) are polynomials of order 3k and are even (odd) if k is even (odd) [28].
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